80 research outputs found

    MAD Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems

    Full text link
    Training and deploying large machine learning (ML) models is time-consuming and requires significant distributed computing infrastructures. Based on real-world large model training on datacenter-scale infrastructures, we show 14~32% of all GPU hours are spent on communication with no overlapping computation. To minimize the outstanding communication latency, in this work, we develop an agile performance modeling framework to guide parallelization and hardware-software co-design strategies. Using the suite of real-world large ML models on state-of-the-art GPU training hardware, we demonstrate 2.24x and 5.27x throughput improvement potential for pre-training and inference scenarios, respectively

    Susceptibility to non-tuberculous mycobacterial disease is influenced by rs1518111 in IL10

    Get PDF
    Although exposure to potentially pathogenic nontuberculous mycobacteria (NTM) via soil and domestic water supplies is common, pulmonary infection and disease are confined to a small proportion of older individuals. Previously, alleles of a polymorphism in IL10 (rs1800896) were associated with NTM disease and we demonstrated elevated production of IL-10 by blood leukocytes from patients with pulmonary NTM. Here seven additional polymorphisms in IL10 were investigated in a larger cohort of Caucasian controls and patients with pulmonary NTM disease. This demonstrated a significant association between pulmonary NTM disease and one polymorphism (rs1518111) in strong linkage disequilibrium with rs1800896

    DeepRecSys: A System for Optimizing End-To-End At-scale Neural Recommendation Inference

    Full text link
    Neural personalized recommendation is the corner-stone of a wide collection of cloud services and products, constituting significant compute demand of the cloud infrastructure. Thus, improving the execution efficiency of neural recommendation directly translates into infrastructure capacity saving. In this paper, we devise a novel end-to-end modeling infrastructure, DeepRecInfra, that adopts an algorithm and system co-design methodology to custom-design systems for recommendation use cases. Leveraging the insights from the recommendation characterization, a new dynamic scheduler, DeepRecSched, is proposed to maximize latency-bounded throughput by taking into account characteristics of inference query size and arrival patterns, recommendation model architectures, and underlying hardware systems. By doing so, system throughput is doubled across the eight industry-representative recommendation models. Finally, design, deployment, and evaluation in at-scale production datacenter shows over 30% latency reduction across a wide variety of recommendation models running on hundreds of machines

    Major Cardiovascular Events After COVID-19, Event Rates Post-vaccination, Antiviral or Anti-inflammatory Therapy, and Temporal Trends: Rationale and Methodology of the Corona-VTE-Network Study

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with excess risk of cardiovascular and thrombotic events in the early post-infection period and during convalescence. Despite the progress in our understanding of cardiovascular complications, uncertainty persists with respect to more recent event rates, temporal trends, association between vaccination status and outcomes, and findings within vulnerable subgroups such as older adults (aged 65 years or older), or those undergoing hemodialysis. Sex-informed findings, including results among pregnant and breastfeeding women, as well as adjusted comparisons between male and female adults are similarly understudied. METHODS: Adult patients, aged ≥18 years, with polymerase chain reaction-confirmed COVID-19 who received inpatient or outpatient care at the participating centers of the registry are eligible for inclusion. A total of 10,000 patients have been included in this multicenter study, with Brigham and Women\u27s Hospital (Boston, MA) serving as the coordinating center. Other sites include Beth Israel Deaconess Medical Center, Anne Arundel Medical Center, University of Virginia Medical Center, University of Colorado Health System, and Thomas Jefferson University Health System. Data elements will be ascertained manually for accuracy. The two main outcomes are 1) a composite of venous or arterial thrombotic events, and 2) a composite of major cardiovascular events, defined as venous or arterial thrombosis, myocarditis or heart failure with inpatient treatment, new atrial fibrillation/flutter, or cardiovascular death. Clinical outcomes are adjudicated by independent physicians. Vaccination status and time of inclusion in the study will be ascertained for subgroup-specific analyses. Outcomes are pre-specified to be reported separately for hospitalized patients versus those who were initially receiving outpatient care. Outcomes will be reported at 30-day and 90-day follow-up. Data cleaning at the sites and the data coordinating center and outcomes adjudication process are in-progress. CONCLUSIONS: The CORONA-VTE-Network study will share contemporary information related to rates of cardiovascular and thrombotic events in patients with COVID-19 overall, as well as within key subgroups, including by time of inclusion, vaccination status, patients undergoing hemodialysis, the elderly, and sex-informed analyses such as comparison of women and men, or among pregnant and breastfeeding women

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant.

    Get PDF
    BACKGROUND: Assessment of the safety and efficacy of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different populations is essential, as is investigation of the efficacy of the vaccines against emerging SARS-CoV-2 variants of concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. METHODS: We conducted a multicenter, double-blind, randomized, controlled trial to assess the safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) in people not infected with the human immunodeficiency virus (HIV) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5Ă—1010 viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. RESULTS: Between June 24 and November 9, 2020, we enrolled 2026 HIV-negative adults (median age, 30 years); 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], -49.9 to 59.8). Among the 42 participants with Covid-19, 39 cases (95.1% of 41 with sequencing data) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, -76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate Covid-19 due to the B.1.351 variant. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT04444674; Pan African Clinical Trials Registry number, PACTR202006922165132)

    Implementation and Analysis of a Capacitive Sensing Network for Intelligent Physically-Integrated Sensing Applications

    No full text
    Physically-Integrated (PI) Sensing is a promising new approach for creating sensing systems that have the potential to enhance various perception-based tasks. This enhancement comes from the sensors’ ability to preserve the inherent semantic structure in the data that we extract from the embedded signals. While PI Sensing itself is not limited to a particular technologies for system implementation, Large-Area Electronics (LAE) – a technology fabric often found in modern display technologies – has proven to be a suitable platform for realizing PI Sensing systems due to its compatibility with large, conformal substrates. One example of such sensing system is a floor-based capacitive sensing network. While previous work has already demonstrated the deployment of such system at smaller scales and for simpler applications, this thesis is focused on implementing the capacitive sensing network on a larger scale and for human location detection. This thesis is composed of three main parts: 1) literature review of the relevant technologies, 2) implementation details of the sensing network, and 3) analysis and modeling of the nonidealities associated with the system

    Development and external validation of a pretrained deep learning model for the prediction of non-accidental trauma

    No full text
    Abstract Non-accidental trauma (NAT) is deadly and difficult to predict. Transformer models pretrained on large datasets have recently produced state of the art performance on diverse prediction tasks, but the optimal pretraining strategies for diagnostic predictions are not known. Here we report the development and external validation of Pretrained and Adapted BERT for Longitudinal Outcomes (PABLO), a transformer-based deep learning model with multitask clinical pretraining, to identify patients who will receive a diagnosis of NAT in the next year. We develop a clinical interface to visualize patient trajectories, model predictions, and individual risk factors. In two comprehensive statewide databases, approximately 1% of patients experience NAT within one year of prediction. PABLO predicts NAT events with area under the receiver operating characteristic curve (AUROC) of 0.844 (95% CI 0.838–0.851) in the California test set, and 0.849 (95% CI 0.846–0.851) on external validation in Florida, outperforming comparator models. Multitask pretraining significantly improves model performance. Attribution analysis shows substance use, psychiatric, and injury diagnoses, in the context of age and racial demographics, as influential predictors of NAT. As a clinical decision support system, PABLO can identify high-risk patients and patient-specific risk factors, which can be used to target secondary screening and preventive interventions at the point-of-care
    • …
    corecore